高分辨率太赫兹驱动的原子探针层析成像

导读 材料科学家必须能够使用原子尺度上的强电磁场对物质进行超快速控制,以了解固体中的电离动力学和激发。研究人员可以将皮秒持续时间的太赫兹...

材料科学家必须能够使用原子尺度上的强电磁场对物质进行超快速控制,以了解固体中的电离动力学和激发。研究人员可以将皮秒持续时间的太赫兹脉冲耦合到金属纳米结构上,以产生极强的局部电场。现在在有关科学进步的新报告中CNRS和法国大学研究所的Angela Vella以及一个研究小组控制了整个金属纳米尖端的场离子发射。太赫兹近场在亚皮秒级的时间尺度上引起表面原子作为离子的非热超快蒸发,其尖端充当场放大器。超快太赫兹离子相互作用为超快自由离子脉冲提供了前所未有的控制,可在原子尺度上成像,分析和处理物质。在这项工作中,维拉等。演示了太赫兹原子探针显微技术,是具有原子和化学分辨率的显微术的新平台。

原子探针层析成像的基础

将电磁场耦合到固态纳米结构以控制物质在纳米尺度上的基本特性的能力越来越受到包括化学,催化,气敏和超快电子显微镜和成像在内的各种应用的兴趣。原子探针层析成像(APT)的基本原理涉及从尖锐的尖端向正离子发射场,这是一种基于强电场下纳米针状样品中原子的受控场蒸发的成像技术。该技术之所以具有吸引力,是因为它能够在空间的三个维度上提供亚纳米级的空间分辨率,并且对整个周期元素及其同位素具有很高的化学敏感性。

激光辅助原子探针断层扫描

首先,由于使用高压脉冲触发离子蒸发,因此原子探针层析成像方法仅限于导电材料。激光辅助原子探针层析成像技术(La-APT)的发展使人们能够分析半导体和介电材料。在La-APT期间,科学家们通过高DC场和超短激光脉冲的组合作用,逐个原子地蒸发了样品原子。由于现有的限制,基于太赫兹的APT进行高分辨率成像的潜力是非常有前途的,尽管对于深入了解太赫兹脉冲的基本物理学至关重要物质相互作用。研究人员表明,正偏压纳米尖端中太赫兹场的增强可触发纳米结构表面带正电的离子的发射,从而提供了一种具有化学和空间分辨率的太赫兹辅助APT仪器。

在实验过程中,研究小组专注于在铝制尖端上偏置了几千伏特的双色空气等离子体产生的单周期强太赫兹场。他们将近红外(NIR)脉冲与太赫兹脉冲组合在一起,并将其共线聚焦在偏置了几千伏特的铝尖端上。他们使用飞行时间测量来获取质荷比,并从探测器系统上的撞击位置利用反向投影定律重建蒸发量。。研究人员注意到在原子探针腔外通过电光采样测量的两个反向场方向或极性所产生的太赫兹脉冲的时间轨迹。Vella等。在NIR照明下,使用该场驱动负偏压铝电极头的电子发射,从而测量了样品顶点处的太赫兹场,以显示该电极头如何用作超快整流二极管。研究小组注意到,由于天线对尖端的响应,与入射的太赫兹脉冲存在相同的偏差。结果表明,太赫兹脉冲的幅度大约是入射太赫兹场的2000倍。为了比较场增强因子,该团队使用了时域有限差分商业软件Lumerical考虑尖端的几何形状。该团队将太赫兹场的振幅增加到最大5.5 V / nm,以使用太赫兹脉冲执行离子场发射。然后,他们使用电子能量滤波实验性地检查了太赫兹近场的该值。

研究太赫兹辅助APT中的铝尖端及其双频激励

为了使用太赫兹脉冲执行离子场蒸发,Vella等人。将铝头以9 kV正偏置,并将具有正极性的太赫兹脉冲设置为最大振幅5.5 V / µm,对应于10.5 V / nm的近场。科学家展示了使用太赫兹和NIR激光脉冲在相同偏置下获得的质谱图。使用NIR分析可以看出,蒸发体积的3-D重建显示了三个晶体学方向的分辨良好的原子面。该团队使用场腐蚀获得了APT的图像重建,并使用傅立叶变换计算了3-D图像的空间分辨率方法。使用铝尖端的双频激励,他们记录了蒸发速率与近红外和太赫兹激光脉冲之间的延迟的关系。

在太赫兹脉冲先于NIR脉冲的情况下,蒸发速率被认为是稳定的,其值等于仅通过太赫兹脉冲获得的蒸发速率,因此不受NIR激光激发的影响。NIR和THz脉冲之间的时间重叠保持了不变的蒸发速率。当NIR脉冲在太赫兹脉冲之前时,蒸发速率在不到0.5皮秒的时间内上升到最大值。与近红外脉冲相比,太赫兹脉冲辅助的潜在物理蒸发机制有助于原子探针的化学和空间分辨率。AI纳米尖端中双频激发的结果为太赫兹脉冲无热离子蒸发提供了实验证明。

外表

这样,安吉拉·维拉(Angela Vella)及其同事证明了通过尖端增强的单周期太赫兹脉冲,表面原子作为离子的超快,非热场蒸发是如何为空间和化学分辨率的材料分析铺平道路的。该方法还可以促进高电场中的时间分辨化学,以开辟新的场致化学方法。由单周期太赫兹脉冲产生的场蒸发离子的窄能量分布将为使用带电粒子束进行成像,分析以及从微米级到纳米级的物质修饰开辟道路。

免责声明:本文由用户上传,如有侵权请联系删除!